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Al~traet--Detection of tool failure is very important in automated manufacturing. In this study, tool failure 
detection was conducted in two steps by using Wavelet Transformations and Neural Networks (WT-NN).  
In the first step, data were compressed by using wavelet transformations and unnecessary details were 
eliminated. In the second step, the estimated parameters of the wavelet transformations were classified by 
using Adaptive Resonance Theory (ART2)-type self-learning neural networks. Wavelet transformations 
represent transitionary data and complex patterns in a more compact form than time-series methods (frequency 
and time-domain) by using a family of the most suitable wave forms. Wavelet transformations can also be 
implemented on parallel processors and require less computations than Fast Fourier Transformation (FFT). 
The training of ART2-type neural networks is faster than backpropagation-type neural networks and ART2 
is capable of updating its experience with the help of an operator while it is monitoring the sensory signals. 
The proposed approach was tested in over 171 cases and all the presented cases were accurately classified. 
The proposed system can be easily trained to inspect data during transition and/or any complex cutting 
conditions. The system will indicate failure instantaneously by creating a new category, thus alerting the 
operator. 

1, INTRODUCTION 

Automatic monitoring of tool conditions and detection of tool failure are necessary in 
automated manufacturing to improve quality and increase productivity. Many different 
approaches have already been developed to secure a reliable monitoring technique. 
The value of tool failure detection systems is evaluated according to their reliability, 
accuracy, speed, simplicity, versatility and ease of programming requirements. In this 
paper, the feasibility of combining two very promising techniques [Wavelet Transform- 
ations and Neural Networks (WT-NN)] is investigated. The WT-NN compresses 
resultant force by using wavelet transformations and classifies this compact information 
by using Adaptive Resonance Theory (ART-2)-type self-learning neural networks. The 
main advantages of the proposed system are its fast algorithm, efficient use of parallel 
processors and easy implementation to various machining operations simply by on-site 
training. A multipurpose WT-NN can be used for many other applications, from 
speech recognition to monitoring drilling operations. 

Previously developed tool failure detection systems used either custom developed 
programs or used a known procedure with some modifications. Altintas et al. [1] 
Altintas and Yellowly [2], Sutherland et al. [3] and Richter and Spiewak [4] developed 
their failure detection algorithms by considering the theoretical force variation charac- 
teristics of milling signals. Other researchers developed their methods by using either 
time-series analysis methods [5-8] or neural networks [9, 10]. To detect tool failure, 
researchers either forecast the cutting forces periodically by using time-series methods 
and evaluating the error [5-7] or inspecting the parameters of estimated models [8]. 
Implementation of the time-series approaches is not very easy since these procedures 
require preparation of very efficient programs that can perform very fast on-line data 
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acquisition and the fitting of high-order models [9]. Properly selected, trained neural 
networks can estimate tool condition [10, 11] by inspecting the encoded data of a 
single revolution of the tool. This capability eliminates the on-line data collection 
requirement and simplifies programming. Neural network-based methods may perform 
data acquisition in the background and transfer it to memory through the Direct 
Memory Access (DMA) feature of microcomputers. 

During milling operations, unique cutting force or torque signals are created in every 
tool revolution if the cutting conditions are the same. These signals have a complex 
pattern [12, 13] that cannot be represented with the addition of a few harmonic 
functions. The low frequency patterns are generated by the variation of the chip width 
at each cutting edge of the cutter. The cutting force created by each cutting edge rises 
and then falls to zero acccording to a complex equation [14] that cannot be represented 
with a single sine wave. The duration of this pattern is half of the maximum of one 
tool revolution in slotting. During the other half of the tool rotation, the cutting force 
is zero for that tooth. Even if all the cutting edges have a certain runout, at most, we 
expect ascents and descents that are equal to the number of teeth in that cutter. The 
high frequency patterns are generated by the vibrations, material characteristic vari- 
ations, and other factors. Technically, the end milling signals can be described as a 
unique pattern with a large number of time-localized features and many details. To 
detect tool failure, the unique cutting force pattern has to be isolated and represented 
by a small number of parameters. 

Time-series methods assume that the output of all systems can be represented by 
totalling the number of harmonic signals. This assumption is valid when the oscillation 
of a beam is considered. For example, to represent a square wave, FFT suggests 
addition of a sine wave and several harmonics. For the same signal, time-domain/time- 
series methods estimate very high order models, which have spectral characteristics 
similar to FFT. 

Recently, wavelet transformations were used to separate the important features of 
signals from details and to generate a more compact representation. Wavelet transform- 
ations have also been used to compress one (sound) and two (digital image) dimensional 
data [14-16]. Especially when the signal is generated with the addition of complex 
patterns, more accurate and compact representation is expected from the use of 
orthonormal basis functions or wavelet transformation [17], since they represent any 
given signal by translating and scaling a custom designed mother wave [17-23]. For 
example, wavelet transformations would give a very compact and accurate represen- 
tation of a square wave better than FFT when the Haar function is used as the mother 
wave, which is a rectangle. On the other hand, vibrations of linear structures are 
generated by the addition of harmonic oscillations, and a fixed and narrow resolution 
is required to estimate the natural frequency of the system. Time-series methods can 
estimate the natural frequency of the system much more accurately than wavelet 
transformations. 

Typically, wavelet transformations require less computation than FFT. For example, 
FFT requires Nlog2 N operations for transformation of a set of N numbers. Fast wavelet 
transformations require N operations, and the number of operations halves when the 
transformations are repeated [17]. 

According to the above discussions, wavelet transformations are excellent candidates 
for preparing a very representative and compact data set for cutting force signals. The 
compact data set can then be presented to neural networks for classification. The 
authors used WT-NN previously for detection of tool failure in micro-drilling [24]. 

Neural networks have been used for a long time for the classification of various 
signals [25]. The most commonly used neural network in manufacturing related 
research is backpropagation [26]. Tansel and McLaughlin [10, 11] and Burke [27], 
however, used ART2-type neural networks for their fast and continuous learning 
capability. In prevous studies, sensory signals were encoded with a custom-built pro- 
cedure. The number of inputs to the neural network can be kept to a minimum and 
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computational speed can be increased by using custom-built procedures; however, it 
requires experience, programming and considerable computer knowledge if parallel 
processors are used. 

In the following section, a theoretical background of wavelet transformations and 
neural networks will be introduced first. The experimental set-up, the tool failure 
detection procedure and the results will be presented in subsequent sections. 

2. THE THEORETICAL BACKGROUND 

The experimental data were encoded by using wavelet transformations, and the 
encoded data were then presented to the neural networks. A theoretical background 
of wavelet transformations and ART2-type neural networks will be presented in this 
section. 

2.1. Wavelet transformations 
Wavelets are obtained by creating a family of functions derived from one single 

function [20, 21, 23]. This system can be expressed by the following equation: 

ht~'b)(x)= [al-1/2h(~-d~) , (i) 

where a and b are the dilation and translation parameters, respectively. In the above 
equation, h ta,b) represents the family of wavelets obtained from the single h function 
by dilations and translations. The given data consist of the f function in the given x 
coordinate. 

After wavelet transformation, the original signal can be reconstructed by using the 
following expression: 

C Ida f db<h(a.b,,f)h(a.b, f =  j - a ~ j  (2) 

where f is the original function. (h(a'b),f) are the inner products of the wavelet. 
A discrete wavelet transform is used to work with discrete signals [21, 23]. The 

function, f, can be mapped with sequences under certain conditions and the wavelets 
can be obtained with the following equation: 

( Tf)m, = (h,,,. , f )  = aom/2 f h( aff '~x-nbo)f(x ) dx , (3) 

where (Tf)mn represents the discrete wavelet transformation, and (hm.J)  are the 
wavelet coefficients. The ao and bo are the fixed dilation and translation steps, respect- 
ively. The dilation and translation coefficients have the following relationship with the 
fixed steps: 

a = a'~,b = nbt~'d' , (4) 

where m and n are the indices. The original function can be reconstructed from the 
calculated wavelets with the following expression: 

2 
f =  A +----~(h,~,,,f>m., + R (5) 

with 
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It can be proven that based on the above descriptions, the basic function (scaling 
function), ~(x),  of a wavelet system can be calculated with the following recursive 
equation [17, 21, 23]: 

*(x )  = ~,c(n)  * ( 2 x - n )  , (6) 
?1 

where c(n) is the wavelet coefficient and n is the index. The primary wavelet, ~(x) ,  
can be obtained with the following expression: 

XP(x) = ~] ( -1)"c(n  + 1)qb(2x - n) , (7) 
n 

where c(n + 1) is the coefficient. The original function can be reconstructed by the 
following expression: 

f i x )  = ~ c(n)*n(t) + ~'~ d(i , j )*i j( t)  (8) 
n = - - ~  i = O j = _ ~  

where c(n) = If(t)tbn(t)dt 
d 

d(i,j) = I f ( t  ) ~i,i(t)dt , and 

where c(n) and d(i,j) are the coefficients of the wavelet transform. 
Daubechies [21, 23] proposed a wavelet system based on an orthonormal base. The 

h functions had the following values for this system: 

h (O) -  (4 X/-~) 

(3+,f3) 
h ( 1 ) -  (4~) 

(3-+,f3) 
h(2) = ~ (9) 

(1_+ x/-3) 
h ( 3 ) -  (4,~) " 

In this paper, the wavelet coefficients are found based on the above wavelet system. 

2.2. Adaptive resonance theory 
The theory of adaptive resonance networks was first introduced by Carpenter and 

Grossberg [28] and Grossberg [29, 30]. According to this theory, adaptive resonance 
occurs when the input to a network and the feedback expectancies match. The ART2- 
type neural networks were developed by Carpenter and Grossberg [28] to achieve a 
self-organized stable pattern recognition capability in real time. The ART2-type neural 
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networks compare a given input with previously encountered patterns. If the input is 
similar to any of the patterns, it will be placed in the same category with similar 
patterns. On the other hand, if the input is not similar to any of the previously presented 
patterns, a new category will be assigned to the given input. The sensitivity of the neural 
network is adjusted with the vigilance value. High vigilance will increase sensitivity, will 
reduce errors and will generate a large number of categories. The number of assigned 
categories can be reduced by selecting low vigilance values; however, errors will 
increase. An optimal vigilance value creates a reasonable number of categories with 
minimum error. 

3. EXPERIMENTAL SET-UP 

The experimental apparatus is presented in Fig. 1. A standard Bridgeport Vertical 
Milling Machine was used for the experimental study. The cutting force signals were 
measured by using a Kistler 9257A 3-Component dynamometer. The dynamometer 
was mounted on the table of the milling machine. The workpiece was then mounted 
on the dynamometer. The cutting force signals were sampled at fixed rotation angles 
of the spindle (X direction and Y direction force components in the horizontal plane 
were sampled in turn at every 1 ° rotation of the spindle) by using a Litton Model 70 
encoder as a triggering source. The output voltage signal of the Charge Amplifier was 
collected separately by both a microcomputer (on-line) and a Tektronix 2221 digital 
oscilloscope (off-line). The microcomputer had a Metrabyte uCDAS-16G A/D board 
installed in one expansion slot to sample the data on-line. A Tektronix 2221 digital 
oscilloscope was used to sample the data for off-line analysis. The resultant force was 
calculated from the measured cutting force components. 

Experimental data were collected using four flute end mills (diameter of 12.7 mm). 
It was impossible to break one tooth during the experiment to collect the good and 
broken tool cutting force signals in the same data set with less than a few thousand 
samples. In this study, exactly the same two end mills were used. One tooth of one 
of the end mills was ground to eliminate its tool removal capability. The other tool 
was in excellent condition. The experiments were repeated for the same cutting con- 
ditions. The good and broken tool data were carefully assembled later to obtain a data 
set that starts with the good tool signal and continues with the broken tool signal. The 
data set represented the necessary data with good and broken tool sections. The cutting 
conditions and variations of the sum of the squares of the estimation errors of tooth 
periods are outlined in section 5. 
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Fig. 1. The experimental set-up. 
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Fig. 2. Selecting the sample cycles. 

4. TOOL FAILURE DETECTION 

The experimental data were collected by sampling the cutting forces in the horizontal 
XY plane 180 times in each revolution by using an optic encoder. The cutting forces 
in the X and Y directions were measured and the resultant forces were calculated. 
Blocks of 360 data points, representing two complete cycles, were analyzed. The 
minimum point in the first 180 points (one cycle) was found and then the sample cycle 
was taken starting from that point (i.e., the next 180 values from the minimum point 
were used as the sample cycle). A selection of the 180 values is presented in Fig. 2. 

For each of the nine cases, it was possible to obtain 19 sample cycles. The wavelet 
transformation of each of these cycles was found using a Daubechies-type wavelet 
[please see equation (9)]. The c(n), equation (8), transformation coefficients were 
obtained after the transformation was repeated four times. These coefficients were 
used to characterize the sample and they were presented to the ART2-type neural 
network for classification. 

5. RESULTS AND DISCUSSION 

In this study, the characteristics of normal and broken tool signals were studied in 
three steps. First, the pattern of the resultant forces was visually inspected. Secondly 
the wavelet transformation of the forces was calculated and distinctive patterns were 
observed. Finally, the wavelet transformations were presented to the neural network 
and the accuracy of the classifications was evaluated. 

The experimental cutting conditions are given in Table 1. Typical data are presented 

Table 1. Experimental cutting conditions. Tool diameter is 12.7 ram. Normal tool had four cutting 
edges. One of the cutting edges of the broken tool did not remove any material 

Experiment Axial depth of cut Feed rate Spindle speed 
no. (mm) (mm/min) (rpm) Tool condition 

1 1.524 101.6 700 Normal 
1.524 101.6 700 Broken 

2 1.016 203.2 500 Normal 
1.016 203.2 500 Broken 

3 1.524 50.8 500 Normal 
1.524 50.8 500 Broken 

4 1.524 101.6 500 Normal 
1.524 101.6 500 Broken 

5 1.524 203.6 700 Normal 
1.524 203.6 700 Broken 

6 1.524 254 700 Normal 
1.524 254 700 Broken 

7 1.016 152.4 500 Normal 
1.016 152.4 500 Broken 

8 1.524 152.4 500 Normal 
1.524 152.4 500 Broken 

9 1.524 152.4 700 Normal 
1.524 152.4 700 Broken 
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Fig. 3. Variation of the resultant cutting force. The tool is broken in the middle. 

in Fig. 3. In the beginning, the variation of the resultant cutting forces was created 
with runout and vibrations of the system. However, the variations suddenly increased 
when one of the teeth was broken. The waveform and the variation of the good and 
broken tool signals were very distinctive. 

The c(n) coefficients in equation (8) were calculated for the data in Fig. 3 and are 
presented in Fig. 4. To prepare the plot, 360 data-point-long data blocks were taken 
and processed according to the procedure outlined in section 4. On the plot, the 26 
c(n) coefficients [equation (8)], and 19 cases were assigned to the X and Y axes, 
respectively. The values of the parameters are on the Z axis. The values of the estimated 
parameters were almost the same in the first ten cases while the cutting tool was sharp. 
When the tool was broken, the values of the 2nd to 11th parameters almost doubled. 
Figure 4 indicates that by using the wavelet transformation, the data consisting of 180 
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Fig. 4. Variation of the parameters of the wavelet transformation with normal and broken tools. The X 
and Y axes were assigned to 26 wavelet coefficients and 19 cases. The Z values represent the values of each 

coefficient. 
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data points can be compressed into a meaningful set of 26 numbers and these parameters 
can be used to detect tool failure. 

The experiments were repeated for eight more different cutting conditions. At each 
cutting condition, 19 blocks of data were processed. In each set, either the first nine 
or ten data blocks were taken with a normal tool. The estimated c(n) parameters of 
171 different cases are presented in Fig. 5. Similar to Fig. 4, the X and Y axes were 
assigned to 26 wavelet coefficients and 171 cases. The Z represents the values of each 
parameter. The values of the parameters depend on the cutting condition, while the 
patterns depend on the tool condition. All of the parameters were similar for normal 
tools. When one of the cutters was broken, either the 3rd to the 12th, or the 20th to 
the 25th parameters almost doubled. By inspecting Fig. 5, it is possible to identify 
where the cutting condition changed, or where the tool was broken. This analysis 
indicates that the c(n) parameters of the wavelet transformations can be used to 
monitor variations of the cutting, or the tool conditions. 

23 parameters (the 2rid to 24th) of the 171 cases were presented to an ART2-type 
neural network. The neural network identified 18 different cases when the selected 
vigilance was 0.995 (Table 2). All of the changes in the cutting conditions and the tool 
failures were identified accurately (ART2 created 18 categories, 1 normal and 1 broken 
tool category for each of 9 cutting conditions). The study indicates that ART2 can 
easily detect tool failure and tool conditions when the wavelet transformations were 
used for encoding. 

The ART2 program evaluates each presented case only once. Backpropagation-type 
neural networks require updating the model many times (iterations) during the training 
session by using the presented set. Depending on the number of cases in the training 
set, the number of inputs and outputs, and selected network size, the iterations may 
reach hundreds of thousands, or even millions. In most of the applications, the training 
of the ART2 can be completed in a very short time relative to backpropagation-type 
neural networks. 

The advantages of the proposed method are the following: 

(a) Implementation of the proposed method is very simple if the proposed WT-NN 
boards become available (much easier than any other method available, until 
now [1-8, 10, 11]). At present, separate wavelet transformation and neural net- 
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Fig. 5. Variation of the parameters of the wavelet transformation at nine different cutting conditions with 
normal and broken tools. The X and Y axes were assigned to 26 wavelet coefficients and 171 cases. The Z 
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Table 2. Classification of the ART2 neural networks with different vigilance values. The cutting conditions 
for each case are given in Table 1 

Vigilance = 0.995 

Presented cases in the Assigned category by Wrong 
Experiment no. Condition same condition ART2 classifications 

! Normal 10 1 0 
Broken 9 2 0 

2 Normal 10 3 0 
Broken 9 4 0 

3 Normal 10 5 0 
Broken 9 6 0 

4 Normal 10 7 0 
Broken 9 8 0 

5 Normal 10 9 0 
Broken 9 10 0 

6 Normal 10 11 0 
Broken 9 12 0 

7 Normal 10 13 0 
Broken 9 14 0 

8 Normal 10 15 0 
Broken 9 16 0 

9 Normal 10 17 0 
Broken 9 18 0 

work chips and high-speed hardware are available. In the near future, multi- 
purpose WT-NN hardware may be developed for many applications, including 
speech processing, image recognition, and others. This hardware can be easily 
implemented to metal cutting applications. 

(b) The calculation speed of WT-NN would be 10-1000 times faster than any available 
procedure [1-8, 10, 11]. While all of the present techniques were developed for 
single processor computers by using compiled programs, the WT-NN would use 
parallel processors and assembly language programming for calculations. 

(c) Time-series methods continuously collect data and update their models [6, 8]. The 
proposed technique may inspect the tool condition from the data of any 360 
points at any desired time. Only the neural network-based techniques, or specially 
developed techniques, can satisfy this condition [1-3, 10, 11]. 

(d) The proposed method may be trained to evaluate the cutting process during the 
machining of an entire workpiece. Such a system will recognize initiation of cutting 
(transition), and all the other possible cutting conditions. However, in that case, 
the neural network will create thousands of cases and classifying each case by 
comparing it with so many patterns will take a long time. Most of the previous tool 
condition monitoring systems discuss indications of tool failure by using different 
approaches; however, they do not offer any automatic classification system for the 
output of their system [1, 5, 6]. All of the available methods would have similar 
problems (slow processing speeds) if they are used to monitor tool failure in all 
cutting conditions. After considering the above facts, it is recommended that the 
tool condition be evaluated at selected points of the machining operation. After 
the WT-NN system is trained on the data taken during the machining of the first 
workpiece at selected points, the tool condition can be evaluated from all sub- 
sequent workpieces at the same locations. 

(e) The pattern of the resultant force is different each time the tool is broken. The 
ART2 neural networks create a new category when they encounter a totally new 
case. A well trained system can create a new category only when the tool is broken 
with a unique pattern. At the next tool failure, the system may indicate the problem 
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if the pattern is the same; otherwise, the system will alert the operator to identify 
the recently created new category. 

(f) WT,NN is a compression and classification technique. It may compress the infor- 
mation in any cutting condition without considering the cutting width, depth, 
orientation, and cutting parameters. Even for very complicated cases, such as when 
the tool removes material according to a very complex geometry (depth of cut is 
different since the tool is not perpendicular to the surface of workpiece, or several 
layers of a composite material are being cut at the same time), the proposed system 
is expected to identify the tool condition properly, if it was previously trained for 
the same conditions. 

6. CONCLUSION 

Use of wavelet transformations is proposed for the compression of resultant cutting 
forces in end milling operations. The estimated parameters of the wavelet transform- 
ations were classified with ART2-type neural networks. 

The resultant force data of milling and drilling operations have a typical pattern 
that cannot be easily represented with harmonic functions. Wavelet transformations 
compressed the original data eight times and represented the important features of 
the signals after unnecessary details were eliminated. The variation of the estimated 
parameters of the wavelet transformations is very distinctive at different cutting con- 
ditions, and when the tool is broken. 

The study indicates that neural networks can classify the estimated parameters of 
wavelet transformations accurately. At the selected vigilance (0.995), WT-NN reco- 
gnizes the difference when a parameter of the cutting (feed, cutting speed and depth 
of cut) changes 50% or more, although the basic patterns remain the same. The system 
is capable of recognizing tool failure immediately, since ART2-type neural networks 
create a new category when they encounter a case they have not previously seen. The 
speed of the proposed system is expected to be 10-1000 times faster than any previously 
proposed system, if parallel processors and assembly language are used for the WT-NN 
hardware. The proposed system can also be trained to classify any complex cutting 
configuration, as long as the same conditions are encountered for all the workpieces, 
even when composite materials are cut. 
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